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Throughout, (X, i) will be a o-finite measure space, p € [1, ),
and p’ € (1, o] will satisfy % + % =1

Definition (Phillips)

Let A be a Banach algebra. We say that A is an LP-operator
algebra if there exists an isometric isomorphism A — B(LP(X, p)).

An L[2-operator algebra is a (non self-adjoint) operator algebra in
the classical sense.

Examples

Q@ M} :=B((P({1,...,n})).

@ Analogs of UHF-algebras. When matrices have the standard
norm, a K-theoretical classification has been obtained by
Phillips.

© Analogs of AF-algebras (Phillips-Viola).
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@ Analogs of irrational rotation algebras A (G.-Thiel). For each
p, there's uncountably many of these which are pairwise
non-isomorphic. There's a classification in terms of 6, except
we don’t have Ag = A‘ie in general.

© Reduced group algebras F{(G) (Herz in the '70’s, 'algebras of
p-pseudofunctions’); full group algebras FP(G) (Phillips).

© Groupoid LP-operator algebras (G.-Lupini).

@ LP-crossed products (Phillips).

This talk focuses mostly on group algebras (to be defined).
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regular representation: \(f)€ = f £ for f € L1(G),& € LP(G).
The reduced group algebra of G is
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The full group algebra FP(G) is the completion of L1(G) in

£ lu = sup{||(F)||: ¢: LY(G) — B(LP(X)) contractive}.

Duality
For p > 1, there are canonical isometric isomorphisms

FP(G) = FP(G) and FP(G)= FF(G).
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LP-operator group algebras

A QSLP-space is a quotient of a subspace of an LP-space.

Define F5g(G) to be the completion of L*(G) in the norm

£ llu = sup{|le(F)]|: ¢: LY(G) — B(QSLP) contractive}.
Given f € L1(G), we have

IFIx < Mfllu < [Iflles < lIfll1-

Proposition (Implicit in work of Herz and Runde)

When p =1, we have || - |1 = || - ||A, S0 we have
LY(G) = FX(G) = F}(G) = Fgs(G).

Proof: L}(G) has a contractive approximate identity.



Group and Banach algebra amenability

There are canonical contractive maps with dense range

Fgs(G) = FP(G) — FL(G).



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).

Recall L1(G) = F{(G) = F}(G) = Fjs(G).



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).
Recall L1(G) = F{(G) = F}(G) = Fjs(G).

Theorem (G.-Thiel using work of Runde; (1) < (5) proved

independently by Phillips)

For p > 1, the following are equivalent:



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).
Recall L1(G) = F{(G) = F}(G) = Fjs(G).

Theorem (G.-Thiel using work of Runde; (1) < (5) proved

independently by Phillips)

For p > 1, the following are equivalent:

@ G is amenable;



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).
Recall L1(G) = F{(G) = F}(G) = Fjs(G).

Theorem (G.-Thiel using work of Runde; (1) < (5) proved

independently by Phillips)

For p > 1, the following are equivalent:
© G is amenable;
@ The map F§5(G) — F{(G) is an isometric isomorphism;



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).
Recall L1(G) = F{(G) = F}(G) = Fjs(G).

Theorem (G.-Thiel using work of Runde; (1) < (5) proved

independently by Phillips)

For p > 1, the following are equivalent:
© G is amenable;
@ The map F§5(G) — F{(G) is an isometric isomorphism;
@ The map Fis(G) — F{(G) is an isomorphism;



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).
Recall L1(G) = F{(G) = F}(G) = Fjs(G).

Theorem (G.-Thiel using work of Runde; (1) < (5) proved

independently by Phillips)

For p > 1, the following are equivalent:
© G is amenable;
@ The map F§5(G) — F{(G) is an isometric isomorphism;
@ The map Fis(G) — F{(G) is an isomorphism;
Q@ The map FP(G) — F{(G) is an isometric isomorphism;



Group and Banach algebra amenability

There are canonical contractive maps with dense range
ng(G) — FP(G) — FY(G).

Recall L1(G) = F{(G) = F}(G) = Fjs(G).

Theorem (G.-Thiel using work of Runde; (1) < (5) proved

independently by Phillips)
For p > 1, the following are equivalent:
© G is amenable;
@ The map F§5(G) — F{(G) is an isometric isomorphism;
@ The map Fis(G) — F{(G) is an isomorphism;
Q@ The map FP(G) — F{(G
© The map FP(G) — F{(G

is an isometric isomorphism;

~— —

is an isomorphism.



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:

@ G is amenable;



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;
@ FP(G) — F{(G) is an (isometric) isomorphism.



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;
@ FP(G) — F{(G) is an (isometric) isomorphism.

Are FO5(G) — F{(G) and FP(G) — F{(G) always onto?



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;
@ FP(G) — F{(G) is an (isometric) isomorphism.

Are ng(G) — F(G) and FP(G) — FY(G) always onto? If not,
are they ever injective but not surjective?



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;
@ FP(G) — F{(G) is an (isometric) isomorphism.

Are ng(G) — F(G) and FP(G) — FY(G) always onto? If not,
are they ever injective but not surjective?

When is the canonical map F¢(G) — FP(G) an isomorphism?



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;
@ FP(G) — F{(G) is an (isometric) isomorphism.

Are ng(G) — F(G) and FP(G) — FY(G) always onto? If not,
are they ever injective but not surjective?

Question

When is the canonical map F¢(G) — FP(G) an isomorphism?
Does it depend on p or on G?



Group and Banach algebra amenability

Recall the following are equivalent for p > 1:
@ G is amenable;
Q@ F§s(G) — FY(G) is an (isometric) isomorphism;
@ FP(G) — F{(G) is an (isometric) isomorphism.

Are ng(G) — F(G) and FP(G) — FY(G) always onto? If not,
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Question

When is the canonical map F¢(G) — FP(G) an isomorphism?
Does it depend on p or on G?

We also studied analogs of FgS(G) using SLP-spaces and
QLP-spaces.
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Theorem (G.-Thiel)

Forl1<p<g<2o0r2<gqg<p< o0, there is a canonical
contractive homomorphism

Yp,q: FP(G) = F9(G)

with dense range. If G is amenable, then v, , is always injective,
and it is surjective only when G is finite.

Uses very crucially the geometry of LP-spaces for different p.

Corollary
If G is discrete, then FP(G) amenable < G amenable.
Well known for p =1 (B. Johnson), and doesn’t need G discrete.

For the rest: L1(G) — FP(G) — C*(G).
(I think this should be true for arbitrary G when p # 2.)
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Thank you.



