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What is an Lp-operator algebra?

Throughout, (X , µ) will be a σ-finite measure space, p ∈ [1,∞),
and p′ ∈ (1,∞] will satisfy 1

p + 1
p′ = 1.

Definition (Phillips)

Let A be a Banach algebra. We say that A is an Lp-operator
algebra if there exists an isometric isomorphism A→ B(Lp(X , µ)).

An L2-operator algebra is a (non self-adjoint) operator algebra in
the classical sense.

Examples

1 Mp
n := B(`p({1, . . . , n})).

2 Analogs of UHF-algebras. When matrices have the standard
norm, a K -theoretical classification has been obtained by
Phillips.

3 Analogs of AF-algebras (Phillips-Viola).
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Examples of Lp-operator algebras

Recall: an Lp-operator algebra is a closed subalgebra of
B(Lp(X , µ)).

Examples

1 Analogs of Cuntz algebras Op
n (Phillips).They have similar

properties as when p = 2, and in particular the same K -theory.

2 Analogs of irrational rotation algebras Ap
θ (G.-Thiel). For each

p, there’s uncountably many of these which are pairwise
non-isomorphic. There’s a classification in terms of θ, except
we don’t have Ap

θ
∼= Ap

−θ in general.

3 Reduced group algebras F p
λ (G ) (Herz in the ’70’s, ’algebras of

p-pseudofunctions’); full group algebras F p(G ) (Phillips).

4 Groupoid Lp-operator algebras (G.-Lupini).

5 Lp-crossed products (Phillips).

This talk focuses mostly on group algebras (to be defined).
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Examples of Lp-operator algebras

Examples: AF-algebras, Cuntz algebras, irrational rotation
algebras, group(oid) algebras, crossed products.

All of these are C ∗-algebras when p = 2. For the other values of p,
we usually say that these ‘look like’ C ∗-algebras, but we don’t have
a definition. Even when an Lp-operator algebra looks like a
C ∗-algebra, there are many technical difficulties:

1 Lp-operator norms are not unique;

2 Homomorphisms are not necessarily contractive and they
don’t have closed range;

3 No abstract characterization and no GNS construction, at
least so far;

4 No continuous functional calculus;

5 We don’t know when a quotient of an Lp-operator algebra is
an Lp-operator algebra.
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Group algebras

Throughout, G will be a second-countable locally compact group.

Definition (Lp-operator group algebras)

Let λ : L1(G )→ B(Lp(G )) be the integrated form of the left
regular representation: λ(f )ξ = f ∗ ξ for f ∈ L1(G ), ξ ∈ Lp(G ).
The reduced group algebra of G is

F p
λ (G ) = λ(L1(G )) ⊆ B(Lp(G )).

The full group algebra F p(G ) is the completion of L1(G ) in

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(Lp(X )) contractive}.

Duality

For p > 1, there are canonical isometric isomorphisms

F p(G ) ∼= F p′(G ) and F p
λ (G ) ∼= F p′

λ (G ).
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Lp-operator group algebras

A QSLp-space is a quotient of a subspace of an Lp-space.

Definition

Define F p
QS(G ) to be the completion of L1(G ) in the norm

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(QSLp) contractive}.

Given f ∈ L1(G ), we have

‖f ‖λ ≤ ‖f ‖u ≤ ‖f ‖QS ≤ ‖f ‖1.

Proposition (Implicit in work of Herz and Runde)

When p = 1, we have ‖ · ‖1 = ‖ · ‖λ, so we have

L1(G ) = F 1
λ(G ) = F 1(G ) = F 1

QS(G ).

Proof: L1(G ) has a contractive approximate identity.
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Group and Banach algebra amenability

There are canonical contractive maps with dense range

F p
QS(G )→ F p(G )→ F p

λ (G ).

Recall L1(G ) = F 1
λ(G ) = F 1(G ) = F 1

QS(G ).

Theorem (G.-Thiel using work of Runde; (1) ⇔ (5) proved
independently by Phillips)

For p > 1, the following are equivalent:

1 G is amenable;

2 The map F p
QS(G )→ F p

λ (G ) is an isometric isomorphism;

3 The map F p
QS(G )→ F p

λ (G ) is an isomorphism;

4 The map F p(G )→ F p
λ (G ) is an isometric isomorphism;

5 The map F p(G )→ F p
λ (G ) is an isomorphism.
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Group and Banach algebra amenability

Recall the following are equivalent for p > 1:

1 G is amenable;

2 F p
QS(G )→ F p

λ (G ) is an (isometric) isomorphism;

3 F p(G )→ F p
λ (G ) is an (isometric) isomorphism.

Question

Are F p
QS(G )→ F p

λ (G ) and F p(G )→ F p
λ (G ) always onto? If not,

are they ever injective but not surjective?

Question

When is the canonical map F p
QS(G )→ F p(G ) an isomorphism?

Does it depend on p or on G?

We also studied analogs of F p
QS(G ) using SLp-spaces and

QLp-spaces.
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Group and Banach algebra amenability

Theorem (G.-Thiel)

For 1 ≤ p < q ≤ 2 or 2 ≤ q < p <∞,

there is a canonical
contractive homomorphism

γp,q : F p(G )→ F q(G )

with dense range. If G is amenable, then γp,q is always injective,
and it is surjective only when G is finite.

Uses very crucially the geometry of Lp-spaces for different p.

Corollary

If G is discrete, then F p(G ) amenable ⇔ G amenable.

Well known for p = 1 (B. Johnson), and doesn’t need G discrete.
For the rest: L1(G )→ F p(G )→ C ∗(G ).
(I think this should be true for arbitrary G when p 6= 2.)
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An analog of Wendel’s theorem

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960’s)

L1(G ) ∼= L1(H) contractively ⇔ G ∼= H.

The main result of this talk is a generalization of Wendel’s
theorem:

Theorem (G.-Thiel)

Suppose that p, q ∈ [1,∞) \ {2}. Then F p
λ (G ) ∼= F q

λ (H)
contractively ⇔ p = q or p = q′ and G ∼= H.

We recover Wendel’s result when p = 1, and with a different proof:
he used extreme points of the unit ball and we used invertible
isometries. Our techniques yield a stronger result, with algebras of
convolvers or pseudomeasures in place of F p

λ .
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Crossed products by minimal homeomorphisms

Let h : X → X and k : Y → Y be free and minimal
homeomorphisms of compact metric spaces. Their Lp-crossed
products are denoted by F p(X , h) and F p(Y , k), respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let p ∈ [1,∞) \ {2}. Then there is a contractive isomorphism
F p(X , h) ∼= F p(Y , k) if and only if X ∼= Y and h is flip conjugate
to k.

Strategy:

1 Use some theory of Lp-operator algebras (p 6= 2 needed here)
to show that C (X ) is mapped to C (Y ) isometrically.

2 Show that any contractive, injective representation of
F p(X , h) (or F p(Y , k)) is isometric. Use this to work with the
canonical representations on Lp(Z× X ) and Lp(Z× Y ).

3 Compute group of invertible isometries, which should consist
of only the “obvious” ones (p 6= 2 needed here again).
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Thank you.
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