Rigidity results for L^{p} -operator algebras

Eusebio Gardella

University of Oregon

West Coast Operator Algebras Seminar, University of Denver, November 2014

Joint work with Hannes Thiel from the University of Münster

What is an L^p-operator algebra?

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$, and $p' \in (1, \infty]$ will satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$, and $p' \in (1, \infty]$ will satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.

Definition (Phillips)

Let A be a Banach algebra. We say that A is an L^{p} -operator algebra if there exists an isometric isomorphism $A \rightarrow \mathcal{B}(L^{p}(X, \mu))$.

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$, and $p' \in (1, \infty]$ will satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.

Definition (Phillips)

Let A be a Banach algebra. We say that A is an L^{p} -operator algebra if there exists an isometric isomorphism $A \rightarrow \mathcal{B}(L^{p}(X, \mu))$.

An L^2 -operator algebra is a (non self-adjoint) operator algebra in the classical sense.

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$, and $p' \in (1, \infty]$ will satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.

Definition (Phillips)

Let A be a Banach algebra. We say that A is an L^{p} -operator algebra if there exists an isometric isomorphism $A \to \mathcal{B}(L^{p}(X, \mu))$.

An L^2 -operator algebra is a (non self-adjoint) operator algebra in the classical sense.

1
$$M_n^p := \mathcal{B}(\ell^p(\{1, \ldots, n\})).$$

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$, and $p' \in (1, \infty]$ will satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.

Definition (Phillips)

Let A be a Banach algebra. We say that A is an L^{p} -operator algebra if there exists an isometric isomorphism $A \to \mathcal{B}(L^{p}(X, \mu))$.

An L^2 -operator algebra is a (non self-adjoint) operator algebra in the classical sense.

Examples

1
$$M_n^p := \mathcal{B}(\ell^p(\{1, \ldots, n\})).$$

Analogs of UHF-algebras. When matrices have the standard norm, a K-theoretical classification has been obtained by Phillips.

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$, and $p' \in (1, \infty]$ will satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.

Definition (Phillips)

Let A be a Banach algebra. We say that A is an L^{p} -operator algebra if there exists an isometric isomorphism $A \to \mathcal{B}(L^{p}(X, \mu))$.

An L^2 -operator algebra is a (non self-adjoint) operator algebra in the classical sense.

Examples

1
$$M_n^p := \mathcal{B}(\ell^p(\{1, \ldots, n\})).$$

- Analogs of UHF-algebras. When matrices have the standard norm, a K-theoretical classification has been obtained by Phillips.
- Analogs of AF-algebras (Phillips-Viola).

イロト 不得下 イヨト イヨト 二日

Recall: an L^{p} -operator algebra is a closed subalgebra of $\mathcal{B}(L^{p}(X, \mu))$.

Recall: an L^{p} -operator algebra is a closed subalgebra of $\mathcal{B}(L^{p}(X, \mu))$.

Examples

• Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips).

Recall: an L^{p} -operator algebra is a closed subalgebra of $\mathcal{B}(L^{p}(X, \mu))$.

Examples

• Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.

Recall: an L^{p} -operator algebra is a closed subalgebra of $\mathcal{B}(L^{p}(X, \mu))$.

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- **2** Analogs of irrational rotation algebras A^p_{θ} (G.-Thiel).

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu)).$

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic.

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu)).$

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- ② Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic. There's a classification in terms of θ, except we don't have A^p_θ ≅ A^p_{-θ} in general.

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu))$.

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic. There's a classification in terms of θ, except we don't have A^p_θ ≅ A^p_{-θ} in general.
- Reduced group algebras F^p_λ(G) (Herz in the '70's, 'algebras of p-pseudofunctions');

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu)).$

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic. There's a classification in terms of θ, except we don't have A^p_θ ≅ A^p_{-θ} in general.
- Reduced group algebras F^p_λ(G) (Herz in the '70's, 'algebras of p-pseudofunctions'); full group algebras F^p(G) (Phillips).

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu))$.

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic. There's a classification in terms of θ, except we don't have A^p_θ ≅ A^p_{-θ} in general.
- Reduced group algebras F^p_λ(G) (Herz in the '70's, 'algebras of p-pseudofunctions'); full group algebras F^p(G) (Phillips).
- Groupoid L^p-operator algebras (G.-Lupini).

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu))$.

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic. There's a classification in terms of θ, except we don't have A^p_θ ≅ A^p_{-θ} in general.
- Reduced group algebras F^p_λ(G) (Herz in the '70's, 'algebras of p-pseudofunctions'); full group algebras F^p(G) (Phillips).
- Groupoid L^p-operator algebras (G.-Lupini).
- *L^p*-crossed products (Phillips).

Recall: an L^p -operator algebra is a closed subalgebra of $\mathcal{B}(L^p(X,\mu)).$

Examples

- Analogs of Cuntz algebras \mathcal{O}_n^p (Phillips). They have similar properties as when p = 2, and in particular the same K-theory.
- Analogs of irrational rotation algebras A^p_θ (G.-Thiel). For each p, there's uncountably many of these which are pairwise non-isomorphic. There's a classification in terms of θ, except we don't have A^p_θ ≅ A^p_{-θ} in general.
- Reduced group algebras F^p_λ(G) (Herz in the '70's, 'algebras of p-pseudofunctions'); full group algebras F^p(G) (Phillips).
- Groupoid L^p-operator algebras (G.-Lupini).
- *L^p*-crossed products (Phillips).

This talk focuses mostly on group algebras (to be defined).

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

All of these are C^* -algebras when p = 2.

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

All of these are C^* -algebras when p = 2. For the other values of p, we usually say that these 'look like' C^* -algebras, but we don't have a definition.

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

All of these are C^* -algebras when p = 2. For the other values of p, we usually say that these 'look like' C^* -algebras, but we don't have a definition. Even when an L^p -operator algebra looks like a C^* -algebra, there are many technical difficulties:

L^p-operator norms are not unique;

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;
- No continuous functional calculus;

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;
- No continuous functional calculus;
- We don't know when a quotient of an L^p-operator algebra is an L^p-operator algebra.

Examples: AF-algebras, Cuntz algebras, irrational rotation algebras, group(oid) algebras, crossed products.

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;
- No continuous functional calculus;
- We don't know when a quotient of an L^p-operator algebra is an L^p-operator algebra.

Throughout, G will be a second-countable locally compact group.

Throughout, G will be a second-countable locally compact group.

Definition (L^{p} -operator group algebras)

Let $\lambda: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$.

5/12

Throughout, G will be a second-countable locally compact group.

Definition (L^p -operator group algebras)

Let $\lambda: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F^p_\lambda(G) = \overline{\lambda(L^1(G))} \subseteq \mathcal{B}(L^p(G)).$$

5/12

Throughout, G will be a second-countable locally compact group.

Definition (L^{p} -operator group algebras)

Let $\lambda: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F_{\lambda}^{p}(G) = \overline{\lambda(L^{1}(G))} \subseteq \mathcal{B}(L^{p}(G)).$$

The full group algebra $F^{p}(G)$ is the completion of $L^{1}(G)$ in

 $||f||_u = \sup\{||\varphi(f)||: \varphi: L^1(G) \to \mathcal{B}(L^p(X)) \text{ contractive}\}.$

Throughout, G will be a second-countable locally compact group.

Definition (L^{p} -operator group algebras)

Let $\lambda: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F_{\lambda}^{p}(G) = \overline{\lambda(L^{1}(G))} \subseteq \mathcal{B}(L^{p}(G)).$$

The full group algebra $F^{p}(G)$ is the completion of $L^{1}(G)$ in

 $||f||_u = \sup\{||\varphi(f)|| \colon \varphi \colon L^1(G) \to \mathcal{B}(L^p(X)) \text{ contractive}\}.$

Duality

For p > 1, there are canonical isometric isomorphisms

Throughout, G will be a second-countable locally compact group.

Definition (L^{p} -operator group algebras)

Let $\lambda: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F_{\lambda}^{p}(G) = \overline{\lambda(L^{1}(G))} \subseteq \mathcal{B}(L^{p}(G)).$$

The full group algebra $F^{p}(G)$ is the completion of $L^{1}(G)$ in

 $||f||_u = \sup\{||\varphi(f)|| \colon \varphi \colon L^1(G) \to \mathcal{B}(L^p(X)) \text{ contractive}\}.$

Duality

For p > 1, there are canonical isometric isomorphisms

$$F^p(G)\cong F^{p'}(G)$$
 and $F^p_\lambda(G)\cong F^{p'}_\lambda(G).$

L^p-operator group algebras

A QSL^{p} -space is a quotient of a subspace of an L^{p} -space.

L^p-operator group algebras

A QSL^{p} -space is a quotient of a subspace of an L^{p} -space.

Definition

Define $F_{QS}^{p}(G)$ to be the completion of $L^{1}(G)$ in the norm

 $\|f\|_u = \sup\{\|\varphi(f)\| \colon \varphi \colon L^1(G) \to \mathcal{B}(QSL^p) \text{ contractive}\}.$
A QSL^{p} -space is a quotient of a subspace of an L^{p} -space.

Definition

Define $F_{QS}^{p}(G)$ to be the completion of $L^{1}(G)$ in the norm

 $\|f\|_u = \sup\{\|\varphi(f)\| \colon \varphi \colon L^1(G) \to \mathcal{B}(QSL^p) \text{ contractive}\}.$

Given $f \in L^1(G)$, we have

$$||f||_{\lambda} \le ||f||_{u} \le ||f||_{QS} \le ||f||_{1}.$$

A QSL^{p} -space is a quotient of a subspace of an L^{p} -space.

Definition

Define $F_{QS}^{p}(G)$ to be the completion of $L^{1}(G)$ in the norm

 $\|f\|_u = \sup\{\|\varphi(f)\| \colon \varphi \colon L^1(G) \to \mathcal{B}(QSL^p) \text{ contractive}\}.$

Given $f \in L^1(G)$, we have

$$\|f\|_{\lambda} \leq \|f\|_{u} \leq \|f\|_{QS} \leq \|f\|_{1}.$$

Proposition (Implicit in work of Herz and Runde)

When p = 1, we have $\|\cdot\|_1 = \|\cdot\|_{\lambda}$,

A QSL^{p} -space is a quotient of a subspace of an L^{p} -space.

Definition

Define $F_{QS}^{p}(G)$ to be the completion of $L^{1}(G)$ in the norm

 $\|f\|_u = \sup\{\|\varphi(f)\| \colon \varphi \colon L^1(G) \to \mathcal{B}(QSL^p) \text{ contractive}\}.$

Given $f \in L^1(G)$, we have

$$||f||_{\lambda} \le ||f||_{u} \le ||f||_{QS} \le ||f||_{1}.$$

Proposition (Implicit in work of Herz and Runde)

When p = 1, we have $\|\cdot\|_1 = \|\cdot\|_\lambda$, so we have

$$L^{1}(G) = F^{1}_{\lambda}(G) = F^{1}(G) = F^{1}_{QS}(G).$$

A QSL^{p} -space is a quotient of a subspace of an L^{p} -space.

Definition

Define $F_{QS}^{p}(G)$ to be the completion of $L^{1}(G)$ in the norm

 $\|f\|_u = \sup\{\|\varphi(f)\| \colon \varphi \colon L^1(G) \to \mathcal{B}(QSL^p) \text{ contractive}\}.$

Given $f \in L^1(G)$, we have

$$||f||_{\lambda} \le ||f||_{u} \le ||f||_{QS} \le ||f||_{1}.$$

Proposition (Implicit in work of Herz and Runde)

When p = 1, we have $\|\cdot\|_1 = \|\cdot\|_\lambda$, so we have

$$L^{1}(G) = F^{1}_{\lambda}(G) = F^{1}(G) = F^{1}_{QS}(G).$$

Proof: $L^1(G)$ has a contractive approximate identity.

6/12

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_\lambda(G) = F^1(G) = F^1_{QS}(G)$.

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_{\lambda}(G) = F^1(G) = F^1_{QS}(G)$.

Theorem (G.-Thiel using work of Runde; $(1) \Leftrightarrow (5)$ proved independently by Phillips)

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_{\lambda}(G) = F^1(G) = F^1_{QS}(G)$.

Theorem (G.-Thiel using work of Runde; $(1) \Leftrightarrow (5)$ proved independently by Phillips)

For p > 1, the following are equivalent:

G is amenable;

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_{\lambda}(G) = F^1(G) = F^1_{QS}(G)$.

Theorem (G.-Thiel using work of Runde; $(1) \Leftrightarrow (5)$ proved independently by Phillips)

- G is amenable;
- **2** The map $F^p_{QS}(G) \to F^p_{\lambda}(G)$ is an isometric isomorphism;

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_{\lambda}(G) = F^1(G) = F^1_{QS}(G)$.

Theorem (G.-Thiel using work of Runde; $(1) \Leftrightarrow (5)$ proved independently by Phillips)

- G is amenable;
- **2** The map $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ is an isometric isomorphism;
- The map $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ is an isomorphism;

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_{\lambda}(G) = F^1(G) = F^1_{QS}(G)$.

Theorem (G.-Thiel using work of Runde; $(1) \Leftrightarrow (5)$ proved independently by Phillips)

- G is amenable;
- **2** The map $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ is an isometric isomorphism;
- The map $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ is an isomorphism;
- The map $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an isometric isomorphism;

There are canonical contractive maps with dense range

$$F^p_{QS}(G) \to F^p(G) \to F^p_{\lambda}(G).$$

Recall $L^1(G) = F^1_{\lambda}(G) = F^1(G) = F^1_{QS}(G)$.

Theorem (G.-Thiel using work of Runde; $(1) \Leftrightarrow (5)$ proved independently by Phillips)

- G is amenable;
- **2** The map $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ is an isometric isomorphism;
- The map $F^p_{QS}(G) \to F^p_{\lambda}(G)$ is an isomorphism;
- The map $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an isometric isomorphism;
- The map $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an isomorphism.

Recall the following are equivalent for p > 1:

G is amenable;

Recall the following are equivalent for p > 1:

- *G* is amenable;
- $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism;

(ロ) (回) (E) (E) (E) (O)(O)

8/12

Recall the following are equivalent for p > 1:

- *G* is amenable;
- $F_{QS}^{p}(G) \to F_{\lambda}^{p}(G)$ is an (isometric) isomorphism;
- $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism.

Recall the following are equivalent for p > 1:

G is amenable;

2
$$F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$$
 is an (isometric) isomorphism;

• $F^p(G) \to F^p_{\lambda}(G)$ is an (isometric) isomorphism.

Question

Are
$$F^p_{QS}(G) \to F^p_{\lambda}(G)$$
 and $F^p(G) \to F^p_{\lambda}(G)$ always onto?

Recall the following are equivalent for p > 1:

G is amenable;

2
$$F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$$
 is an (isometric) isomorphism;

• $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism.

Question

Are $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ and $F^{p}(G) \to F^{p}_{\lambda}(G)$ always onto? If not, are they ever injective but not surjective?

Recall the following are equivalent for p > 1:

• *G* is amenable;

2
$$F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$$
 is an (isometric) isomorphism;

• $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism.

Question

Are $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ and $F^{p}(G) \to F^{p}_{\lambda}(G)$ always onto? If not, are they ever injective but not surjective?

Question

When is the canonical map $F^{p}_{QS}(G) \rightarrow F^{p}(G)$ an isomorphism?

Recall the following are equivalent for p > 1:

• *G* is amenable;

2
$$F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$$
 is an (isometric) isomorphism;

• $F^p(G) \to F^p_{\lambda}(G)$ is an (isometric) isomorphism.

Question

Are $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ and $F^{p}(G) \to F^{p}_{\lambda}(G)$ always onto? If not, are they ever injective but not surjective?

Question

When is the canonical map $F^{p}_{QS}(G) \rightarrow F^{p}(G)$ an isomorphism? Does it depend on p or on G?

Recall the following are equivalent for p > 1:

• *G* is amenable;

2
$$F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$$
 is an (isometric) isomorphism;

• $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism.

Question

Are $F^{p}_{QS}(G) \to F^{p}_{\lambda}(G)$ and $F^{p}(G) \to F^{p}_{\lambda}(G)$ always onto? If not, are they ever injective but not surjective?

Question

When is the canonical map $F^{p}_{QS}(G) \rightarrow F^{p}(G)$ an isomorphism? Does it depend on p or on G?

We also studied analogs of $F_{QS}^{p}(G)$ using SL^{p} -spaces and QL^{p} -spaces.

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q ,$

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

9/12

with dense range.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. If G is amenable, then $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. If G is amenable, then $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. If G is amenable, then $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable $\Leftrightarrow G$ amenable.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. If G is amenable, then $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable \Leftrightarrow G amenable.

Well known for p = 1 (B. Johnson), and doesn't need G discrete.

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. If G is amenable, then $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable $\Leftrightarrow G$ amenable.

Well known for p = 1 (B. Johnson), and doesn't need G discrete. For the rest: $L^1(G) \to F^p(G) \to C^*(G)$.

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. If G is amenable, then $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable \Leftrightarrow G amenable.

Well known for p = 1 (B. Johnson), and doesn't need G discrete. For the rest: $L^1(G) \to F^p(G) \to C^*(G)$. (I think this should be true for arbitrary G when $p \neq 2$.)

Let G and H be locally compact second-countable groups.

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively \Leftrightarrow

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

The main result of this talk is a generalization of Wendel's theorem:

イロン イヨン イヨン イヨン 三日

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

The main result of this talk is a generalization of Wendel's theorem:

```
Theorem (G.-Thiel)
```

Suppose that $p, q \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively \Leftrightarrow

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

The main result of this talk is a generalization of Wendel's theorem:

Theorem (G.-Thiel)

Suppose that $p, q \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively $\Leftrightarrow p = q$ or p = q' and $G \cong H$.

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

The main result of this talk is a generalization of Wendel's theorem:

Theorem (G.-Thiel)

Suppose that $p, q \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively $\Leftrightarrow p = q$ or p = q' and $G \cong H$.

We recover Wendel's result when p = 1, and with a different proof:

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

The main result of this talk is a generalization of Wendel's theorem:

Theorem (G.-Thiel)

Suppose that $p, q \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively $\Leftrightarrow p = q$ or p = q' and $G \cong H$.

We recover Wendel's result when p = 1, and with a different proof: he used extreme points of the unit ball and we used invertible isometries.
An analog of Wendel's theorem

Let G and H be locally compact second-countable groups.

Theorem (Wendel, 1960's)

 $L^1(G) \cong L^1(H)$ contractively $\Leftrightarrow G \cong H$.

The main result of this talk is a generalization of Wendel's theorem:

Theorem (G.-Thiel)

Suppose that $p, q \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively $\Leftrightarrow p = q$ or p = q' and $G \cong H$.

We recover Wendel's result when p = 1, and with a different proof: he used extreme points of the unit ball and we used invertible isometries. Our techniques yield a stronger result, with algebras of convolvers or pseudomeasures in place of F_{λ}^{p} .

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let $p \in [1,\infty) \setminus \{2\}$. Then there is a contractive isomorphism $F^p(X,h) \cong F^p(Y,k)$

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let $p \in [1, \infty) \setminus \{2\}$. Then there is a contractive isomorphism $F^p(X, h) \cong F^p(Y, k)$ if and only if $X \cong Y$ and h is flip conjugate to k.

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let $p \in [1, \infty) \setminus \{2\}$. Then there is a contractive isomorphism $F^p(X, h) \cong F^p(Y, k)$ if and only if $X \cong Y$ and h is flip conjugate to k.

Strategy:

Use some theory of L^p-operator algebras (p ≠ 2 needed here) to show that C(X) is mapped to C(Y) isometrically.

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let $p \in [1, \infty) \setminus \{2\}$. Then there is a contractive isomorphism $F^p(X, h) \cong F^p(Y, k)$ if and only if $X \cong Y$ and h is flip conjugate to k.

- Use some theory of L^p-operator algebras (p ≠ 2 needed here) to show that C(X) is mapped to C(Y) isometrically.
- Show that any contractive, injective representation of *F^p(X, h)* (or *F^p(Y, k)*) is isometric. Use this to work with the canonical representations on *L^p(Z × X)* and *L^p(Z × Y)*.

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let $p \in [1, \infty) \setminus \{2\}$. Then there is a contractive isomorphism $F^p(X, h) \cong F^p(Y, k)$ if and only if $X \cong Y$ and h is flip conjugate to k.

- Use some theory of L^p-operator algebras (p ≠ 2 needed here) to show that C(X) is mapped to C(Y) isometrically.
- Show that any contractive, injective representation of F^p(X, h) (or F^p(Y, k)) is isometric. Use this to work with the canonical representations on L^p(Z × X) and L^p(Z × Y).
- Compute group of invertible isometries, which should consist of only the "obvious" ones ($p \neq 2$ needed here again).

Let $h: X \to X$ and $k: Y \to Y$ be free and minimal homeomorphisms of compact metric spaces. Their L^p -crossed products are denoted by $F^p(X, h)$ and $F^p(Y, k)$, respectively.

Not yet a theorem – need to check details (G.-Phillips-Thiel)

Let $p \in [1, \infty) \setminus \{2\}$. Then there is a contractive isomorphism $F^p(X, h) \cong F^p(Y, k)$ if and only if $X \cong Y$ and h is flip conjugate to k.

- Use some theory of L^p-operator algebras (p ≠ 2 needed here) to show that C(X) is mapped to C(Y) isometrically.
- Show that any contractive, injective representation of F^p(X, h) (or F^p(Y, k)) is isometric. Use this to work with the canonical representations on L^p(Z × X) and L^p(Z × Y).
- Compute group of invertible isometries, which should consist of only the "obvious" ones ($p \neq 2$ needed here again).

Thank you.